Feature Learning Based Approach for Weed Classification Using High Resolution Aerial Images from a Digital Camera Mounted on a UAV

نویسندگان

  • Calvin Hung
  • Zhe Xu
  • Salah Sukkarieh
چکیده

The development of low-cost unmanned aerial vehicles (UAVs) and light weight imaging sensors has resulted in significant interest in their use for remote sensing applications. While significant attention has been paid to the collection, calibration, registration and mosaicking of data collected from small UAVs, the interpretation of these data into semantically meaningful information can still be a laborious task. A standard data collection and classification work-flow requires significant manual effort for segment size tuning, feature selection and rule-based classifier design. In this paper, we propose an alternative learning-based approach using feature learning to minimise the manual effort required. We apply this system to the classification of invasive weed species. Small UAVs are suited to this application, as they can collect data at high spatial resolutions, which is essential for the classification of small or localised weed outbreaks. In this paper, we apply feature learning to generate a bank of image filters that allows for the extraction of features that discriminate between the weeds of interest and background objects. These features are pooled to summarise the image statistics and form the input to a texton-based linear classifier that classifies an image patch as weed or background. We evaluated our approach to weed classification on three weeds of significance in Australia: water hyacinth, tropical soda apple and serrated tussock. Our results showed that collecting images at 5–10 m resulted in the highest classifier accuracy, indicated by F1 scores of up to 94%. Remote Sens. 2014, 6 12038

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

The use of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed site-specific weed control treatments in early post-emergence, which have not possible previously with conventional airborne or satellite images. A robust and entirely automatic object-based image analysis (OBIA) procedure was developed on a series of UAV images using a six-band ...

متن کامل

An Automatic Random Forest-OBIA Algorithm for Early Weed Mapping between and within Crop Rows Using UAV Imagery

Accurate and timely detection of weeds between and within crop rows in the early growth stage is considered one of the main challenges in site-specific weed management (SSWM). In this context, a robust and innovative automatic object-based image analysis (OBIA) algorithm was developed on Unmanned Aerial Vehicle (UAV) images to design early post-emergence prescription maps. This novel algorithm ...

متن کامل

Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping

Unmanned aerial vehicles (UAVs) combined with different spectral range sensors are an emerging technology for providing early weed maps for optimizing herbicide applications. Considering that weeds, at very early phenological stages, are similar spectrally and in appearance, three major components are relevant: spatial resolution, type of sensor and classification algorithm. Resampling is a tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014